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Abstract. Evaluation of the sensitivity to parameter variations should be a basic aspect
in the study of mechanical systems. In a complex system whose dynamical behavior is
governed by several parameters it is important to know which ones are the most importants
if we can change only a few parameters. In this work we study a passive vibration isolation
system whose efficacy is measured by the transmitted power to the base of the system. The
passive system is composed of two isolators and a rigid or flexible base, the excitation can
have any direction. We use a substructuring technique to analyze the system. We have
shown that the configuration (place of isolators, for example) and the type of excitation
are very important in the design, and without the tool of sensilivity analysis would be very
difficult to determine which parameters to modify. We have also studied the influence of
some parameters, like mass, stiffness, isolators slope, etc.
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1. INTRODUCTION

The sensitivity of a dynamic system related to its parameter variations should be
a basic aspect in its analysis. The problem of sensitivity arises in the engineering field
when mathematical models are used with analysis and synthesis purposes. With the aim
to get a unique formulation of the problem, the mathematical model generally is assumed
as exact, but it does not happen in fact because there is always a discrepancy between
the model and the real system.

The mathematical model could be very poor if there is a considerable deviation



between the model and the real system parameters, when the solution is very sensitive to
this parameters. Therefore, it should be part of the modelling to know the parameters
sensitivity beforehand to its implementation, or to reduce them in a systematic manner
if it is necessary. This fact is still more important when it is done a optimization process
because it maximizes or minimizes a performance index of a model for a specific set of
parameters, so the solution will be strongly dependent of them.

In the analysis and comparison of the sensitivity, it is desirable to have a definition
independent of the input signal form, in other words it must be defined in function of
the structure of the system instead of input signals. This last condition is true for the
definitions in the frequency domain. There are several definitions frequently used, and
the most traditionally are (Frank, 1978): Bode, Horowitz and Perkins-Cruz sensitivity
functions.

An interesting application of the sensitivity theory arises when it is necessary to
modify a mechanical system in order to improve a given performance index (Naleckz &
Wicher, 1988). For a complex system, it is difficult to evaluate the variation effect of each
parameter, in this cases the sensitivity method appears as a valuable tool.

2. BASIC CONCEPTS AND DEFINITIONS

2.1. Mobility and impedance formulation

Considering “Fig. 27, it will be deduced the expressions used in this work a mobi-
lity (source and base) and impedance (isolators) matrix formulation (Bishop & Johnson,
1960).

All the forces and displacements have 3 components (g, = [f, f, .7, @ = Sy 1 7,
fr1=[ny1 na ta]”, vp = [ wy 0,4]7, ete.), but, we have adopted a compact nota-
tion for simplicity. Because each component is a quantity that varies harmonically can
be represented in the following way: f, = F,e™’, f, = Fe™! t, = T,e™" etc.

The expressions that relate the velocities (¢) and the forces (f) in the source and
the base can be expressed in the following way (Gardonio et al., 1997; Coronado, 1999):

'l‘Js - Msl-fs + MSQ-QS (1)
Uy = Myt fy + Mgy (2)

We have the following relations:

: Us1 Js1 . D1 Jo1
Vs = | . = vy = | . = 3
s [USQ]v fs lf3217 b [Ub217 fb lbe] ()
The following notation is assumed: the mobility matrices (M) with subscript 1
correspond to internal forces and those with subscript 2 to external forces, whereas the
velocities (¥) or the forces (f) with subscript 1 correspond to the left isolator and those

with subscript 2 to the right isolator.
In the case of the isolators, the forces and the velocities in its ends will be related



by the following way:

Now, the general expressions that relates the external forces (gs, g,) with the internal
velocities and forces (U, v, fs, f3) will be deduced.
To simplify the notation we introduce the following matrices:

_ MSl 0 o M32 0

| 9gs - 'l'Js o fs
QSleb17 'Usbl,l-}b‘|7 fsblfb] (6)

The first two equations can be grouped as:

Usp = Mapr. fop + Msp2.qsp (7)

Using the action and reaction principle for the forces and the continuity for the
velocities, we get:

fi==Tfo=fo=—T""f (8)
0y = Thg = Vg — T 10 (9)

T is a transformation matrix that relates the displacements, velocities or forces of
the masses, with those acting on the isolators extremities.
Using the above equations, one can find:

Usp = My.qsp (10)
Jso = My.qsp (11)
Where:

My = (I + Mg, T2, T) ' My, (12)
My = —(T"VZ7NT + Mgy) ™ Mgs (13)

2.2. Power calculation

The net power in a period will be (“Fig. 17):
1 T 1 /T ot it

P= = / frndt = — / Re[Fe™! Re[V et dt (14)
T Jo T Jo

So, the power can be write as:

1 >k : o 1 : *
P = SRe[I"V| = ZRe[FV"] (15)
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Figure 1: Power calculation

2.3. Bode sensitivity functions

In general, the matrix components of the sensitivity Wy are complex functions de-
pendent on the frequency w. This functions describe the influence of any parameter on
the system dynamic properties characterized by a transfer matrix G.

Being wyx,y and gi; the (k, ) components of the matrices W and G. Where w1y =

gk

B being as a parameter system.

The main idea is: if the magnitude of the sensitivity is high, then the change produced
by the related parameter will be high too. In this case as the matrix G is the power
transmitted to the base, all the components of the ¢ and Wy matrices will be real.

The logarithmic sensitivity functions or Bode functions will be used in this work,
they will be defined in this way:

(16)

3. ISOLATION MODELS

3.1. Model with a rigid base and two flexible isolators

The first system analyzed in this work considers the source and the base as rigid
bodies under a multi-directional excitation (composed by a horizontal and a vertical forces,
and by a moment) acting on the source. The source and base are joined by two flexible
isolators, which have been modeled as a combination of a bar plus an Euler-Bernoulli
beam.

In this system has been considered the following parameters to calculate the sen-
sitivities: the source mass my, the source inertia moment /xgy, the isolators loss factor
7;, the isolators elasticity modulus ['r;, the isolators length L;, the isolators area A;, the
base mass my, the base inertia moment Ixg,, the base springs loss factor 7,, the base
springs length L;, the base springs elasticity modulus Er, the isolators location Dy and
the isolators slope 3.

The abscise of the figures will vary in a frequency range from 1 to 1000 Hz. The first
three resonances (located near 10 Hz) are due to the source suspension, and the next two
to the base suspension (over 100 Hz). Between this two regions it is located the isolation
zone, where the excitation force should act.

It will be calculated the sensitivity of the power transmitted (the derivatives will be
calculated numerically with respect to each parameter). The sensitivity will be showed in



Figure 2: Isolation model with rigid base

a logarithmic scale and in absolute value (if they correspond to negative values we identify
them by dashed lines).

The basic aim is to reduce the power transmitted to the base. Positive values mean
that an increase on the parameter considered produces an increase in the power transmit-
ted. Meanwhile negative values of the sensitivity mean that an increase on the parameter
produces a diminution in the power transmitted.

Therefore, the procedure will be: identify the parameters with the biggest sensitivity
(in value absolute), and then see the sensitivity sign, which will indicate whether this
parameter must be increased or diminished.

Considering the multi-directional harmonic excitation I, = 1, F, = 1,T, = 1 (“Fig.
37), it can be noted that the source mass m has a great influence in the first two source
suspension resonances, but afterwards it diminishes. The source inertia moment lxzg; is
important only near the third suspension resonance. The isolator loss factor n; influence
is smaller than the one of the other parameters, being relatively big and negative in the
suspension resonances, afterwards positive and small in the isolation zone, and finally
big in the isolator flexible resonances. The isolators elasticity modulus Fr; has rather
sensitivity in the three suspension resonances, in the isolation zone, and in the isolator
flexible resonances too, this sensitivity has a positive value, so it must be diminished,
but this almost always has practical limitations because it produces a serious stability
problem.

In “Fig. 47 it is seen the small and almost constant influence of the base springs loss
factor m,. The influence of the elasticity modulus of the base springs Er, is important in
the base resonances. The isolator location Dy shows appreciate influence in all considered
frequencies with exception of those which are close to the base suspension resonances,
moreover it is possible to see that this parameter is important near the first and third



source suspension resonances. The isolators slope 3 show a great sensitivity near the three
source suspension resonances, but it has a fall in the first base suspension resonance.
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Figure 3: Sensitivity under excitation: Fy, = 1, F, = 1,7, =1
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Figure 4: Sensitivity under excitation: Fy, = 1, F, = 1,7, =1

3.2. Model with a flexible base and two flexible isolators

A similar analysis as the one carried out for the system with rigid base will be
done for a system with a flexible base (“Fig. 57), since we have as objective to compare
the parameters influence. The new base properties were chosen to obtain the first base
resonance near to 100 Hz.

In “Fig. 67 it is shown that the source mass m has a similar influence as in the rigid
model, excepting a fall in the 10-100 Hz frequency range. The source inertia moment /zgy,
the isolator loss factor 7; and the elasticity modulus of the isolators Er; show a similar
behavior to first model too.

In “Fig. 7”7 it is showed that the transversal area of the base A; is important only
after the first base resonance located at 100 Hz. The elasticity modulus of the base E'ry is
important in the second suspension resonance and in the flexible resonances. The isolator
location D has a great sensitivity in the suspension resonances and in the isolation zone
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Figure 5: Isolation model with flexible base

(before 100 Hz). Finally, the influence of the isolator inclination angle [ is similar to the
previous parameter, but with smaller magnitude.

The isolation zone is generally between 1 and 100 Hz, and it is considered region
of interest in projects of isolation systems (Inman, 1996). In this example, it will be
calculated the sensitivity in this zone, therefore the first thing that will be made is to
choose a frequency range where there is no big variation of the sensitivity, as it is the case
far of the resonances.

In the following figures we have calculated 10 sensitivities in the 20-60 Hz isolation
range, afterward it was calculated the mean of the absolute valor of them. It will be
shown the influence of excitation force for the mean sensitivity.

In “Fig. 8" the excitation is harmonic and multi-directional I, = 1, F, = 1,7, = 1,
it is noted the great influence of the base length [, get its maximum value at 100 Hz. The
problem is that in many practical applications it is not possible to change this parameter
due to external restrictions. Other parameters that show their importance in this region
are: the isolators length L;, the inertia moment of the source /zg, and elasticity modulus
of the isolators I/r;. The isolator location Dy is important too, but not in the same level
than when the base was rigid.

In the “Fig. 9”7 the excitation is a unitary force vertical I, = 1, the base length L,
is again more important than the other parameters.

In “Fig. 10” when the excitation is a unitary moment 7, = 1, it is showed the
importance of the isolator length L; and of the base length L;, here the isolator location
Dy has a great sensitivity too.

Finally, four of the most important parameters were chosen, the base length was
excluded because we supposed that it was not feasible to be modified. They are: Izgy,
Er;, L;, Ds. The results are showed in the “Fig. 117, for the original system and for
variations of 1 % and 5 % in each parameter.
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Figure 6: Sensitivity under excitation: I, =1, F, = 1,7}
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Figure 7: Sensitivity under excitation: Fy, = 1, F, = 1,7, =1
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Figure 8: Mean sensitivity, under excitation: F,, = 1, F, = 1,7, =1
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Figure 9: Mean sensitivity, under excitation: F,, = 0, F, = 1,7, =0
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Figure 10: Mean sensitivity, under excitation: F, =0, F, = 0,7, = 1
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Figure 11: Comparison between the input and transmitted power, for some variations in
the parameters: Ixgs, E'r;, L;, Dy, under excitation: Fy, =1, F, = 1,7, =1



4. CONCLUSIONS

The sensitivity analysis was shown to be an important tool in the modification process
of the parameters in the isolation systems analyzed in this work. It can be used for the
choice of parameters that have the greatest influence either at a specific frequency or in
a frequency range.

In general, it is not easy to choose the parameters that allow us to diminish the power
transmitted without doing an analysis like this because the influence of each parameter
depends strongly on the particular system configuration and on the excitation.

It was showed that for the same configuration a parameter could be important for a
type of excitation and not for other one.
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